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The question of how the human brain represents conceptual knowledge has been debated in
many scientific fields. Brain imaging studies have shown that different spatial patterns of neural
activation are associated with thinking about different semantic categories of pictures and

words (for example, tools, buildings, and animals). We present a computational model that predicts
the functional magnetic resonance imaging (fMRI) neural activation associated with words for which
fMRI data are not yet available. This model is trained with a combination of data from a trillion-word
text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once
trained, the model predicts fMRI activation for thousands of other concrete nouns in the text corpus,
with highly significant accuracies over the 60 nouns for which we currently have fMRI data.

he question of how the human brain rep-
I resents and organizes conceptual knowledge
has been studied by many scientific commu-
nities. Neuroscientists using brain imaging studies
(1-9) have shown that distinct spatial patterns of
fMRI activity are associated with viewing pictures
of certain semantic categories, including tools, build-
ings, and animals. Linguists have characterized dif-
ferent semantic roles associated with individual
verbs, as well as the types of nouns that can fill those
semantic roles [e.g., VerbNet (/0) and WordNet
(11, 12)]. Computational linguists have analyzed
the statistics of very large text corpora and have
demonstrated that a word’s meaning is captured to
some extent by the distribution of words and phrases
with which it commonly co-occurs (/3—17). Psy-
chologists have studied word meaning through
feature-norming studies (/8) in which participants
are asked to list the features they associate with var-
ious words, revealing a consistent set of core fea-
tures across individuals and suggesting a possible
grouping of features by sensory-motor modalities.
Researchers studying semantic effects of brain dam-
age have found deficits that are specific to given
semantic categories (such as animals) (/9-21).
This variety of experimental results has led to
competing theories of how the brain encodes mean-
ings of words and knowledge of objects, including
theories that meanings are encoded in sensory-
motor cortical areas (22, 23) and theories that they
are instead organized by semantic categories such
as living and nonliving objects (/8, 24). Although
these competing theories sometimes lead to differ-

Machine Learning Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA.
2Department of Psychology, University of South Carolina,
Columbia, SC 29208, USA. >Center for Cognitive Brain
Imaging, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. “Language Technologies Institute, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. >Cognitive Science Department, University of California,
San Diego, La Jolla, CA 92093, USA.

*To whom correspondence should be addressed. E-mail:
Tom.Mitchell@cs.cmu.edu

ent predictions (e.g., of which naming disabilities
will co-occur in brain-damaged patients), they are
primarily descriptive theories that make no attempt
to predict the specific brain activation that will be
produced when a human subject reads a particular
word or views a drawing of a particular object.
We present a computational model that makes
directly testable predictions of the fMRI activity as-
sociated with thinking about arbitrary concrete
nouns, including many nouns for which no fMRI
data are currently available. The theory underlying
this computational model is that the neural basis of
the semantic representation of concrete nouns is
related to the distributional properties of those words
in a broadly based corpus of the language. We de-
scribe experiments training competing computation-
al models based on different assumptions regarding
the underlying features that are used in the brain
for encoding of meaning of concrete objects. We
present experimental evidence showing that the best
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of these models predicts fMRI neural activity well
enough that it can successfully match words it has
not yet encountered to their previously unseen fMRI
images, with accuracies far above those expected
by chance. These results establish a direct, predic-
tive relationship between the statistics of word
co-occurrence in text and the neural activation
associated with thinking about word meanings.

Approach. We use a trainable computational
model that predicts the neural activation for any
given stimulus word w using a two-step process,
illustrated in Fig. 1. Given an arbitrary stimulus
word w, the first step encodes the meaning of w as
a vector of intermediate semantic features computed
from the occurrences of stimulus word w within a
very large text corpus (25) that captures the typ-
ical use of words in English text. For example,
one intermediate semantic feature might be the
frequency with which w co-occurs with the verb
“hear.” The second step predicts the neural fMRI
activation at every voxel location in the brain, as a
weighted sum of neural activations contributed by
each of the intermediate semantic features. More
precisely, the predicted activation y, at voxel v in
the brain for word w is given by

(1)

where f{w) is the value of the ith intermediate
semantic feature for word w, n is the number of
semantic features in the model, and ¢,; is a learned
scalar parameter that specifies the degree to which
the ith intermediate semantic feature activates voxel
v. This equation can be interpreted as predicting the
full fMRI image across all voxels for stimulus word
w as a weighted sum of images, one per semantic
feature f;. These semantic feature images, defined
by the leamned c,;, constitute a basis set of compo-
nent images that model the brain activation asso-
ciated with different semantic components of the
input stimulus words.

W= g] cviﬁ(w)
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Fig. 1. Form of the model for predicting fMRI activation for arbitrary noun stimuli. fMRI activation
is predicted in a two-step process. The first step encodes the meaning of the input stimulus word in
terms of intermediate semantic features whose values are extracted from a large corpus of text
exhibiting typical word use. The second step predicts the fMRI image as a linear combination of the
fMRI signatures associated with each of these intermediate semantic features.
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To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
fiw) L(w).. .f(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
particular other word (e.g., “taste”) or set of words
(e.g., “taste,” “tastes,” or “tasted”’) within the text
corpus. The model is trained by the application of
multiple regression to these features f{w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters c,;
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

A ueatn

Predicted
“celery” = 0.84

Fig. 2. Predicting fMRI images
for given stimulus words. (A)
Forming a prediction for par-
ticipant P1 for the stimulus
word “celery” after training on
58 other words. Learned ¢,; co-
efficients for 3 of the 25 se-
mantic features (“eat,” “taste,”
and “fill") are depicted by the
voxel colors in the three images
at the top of the panel. The co-

occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(M)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

A

Predicted “celery”:

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (/4—17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

il

average

below
average

6d uedioned

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode the wide variety of semantic
content of the input stimulus words and factor the
observed f MRI activation into more primitive com-

“airplane”
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—12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.

Fig. 3. Locations of
most accurately pre-
dicted voxels. Surface
(A) and glass brain (B)
rendering of the correla-
tion between predicted
and actual voxel activa-
tions for words outside
the training set for par-
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ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose
predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the
cortex and located in the left and right occipital and parietal lobes; left and right fusiform,
postcentral, and middle frontal gyri; left inferior frontal gyrus; medial frontal gyrus; and anterior
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« cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.

- '--'“‘E‘i'
| R

N

1192 30 MAY 2008 VOL 320 SCIENCE www.sciencemag.org


http://www.sciencemag.org
asapypy
Highlight


ponents that can be linearly recombined to suc-
cessfully predict the fMRI activation for arbitrary
new stimuli. Motivated by existing conjectures re-
garding the centrality of sensory-motor features in
neural representations of objects (18, 29), we de-
signed a set of 25 semantic features defined by 25
verbs: “see,” “hear,” “listen,” “taste,” “smell,” “eat,”
“touch,” “rub,” “lift,” “manipulate,” “run,” “push,”
“fill,” “move,” “ride,” “say,” “fear,” “open,” “ap-
proach,” “near,” “enter,” “drive,” “wear,” “break,”
and “clean.” These verbs generally correspond to
basic sensory and motor activities, actions per-
formed on objects, and actions involving changes to
spatial relationships. For each verb, the value of the
corresponding intermediate semantic feature for a
given input stimulus word w is the normalized co-
occurrence count of w with any of three forms of the
verb (e.g., “taste,” “tastes,” or “tasted”’) over the text
corpus. One exception was made for the verb “see.”
Its past tense was omitted because “saw’ is one of
our 60 stimulus nouns. Normalization consists of
scaling the vector of 25 feature values to unit length.

We trained a separate computational model for
each of the nine participants, using this set of 25

Fig. 4. Learned voxel
activation signatures for
3 of the 25 semantic fea-
tures, for participant P1
(top panels) and averaged
over all nine participants
(bottom panels). Just one
horizontal z slice is shown
for each. The semantic fea-
ture associated with the
verb “eat” predicts sub-
stantial activity in right
pars opercularis, which is
believed to be part of the
gustatory cortex. The se-
mantic feature associated
with “push” activates the
right postcentral gyrus,
which is believed to be
associated with premotor

Participant
P1

Mean over
participants

“eat”

Pars opercularis
(z=24 mm)

semantic features. Each trained model was evaluated
by means of a “leave-two-out” cross-validation ap-
proach, in which the model was repeatedly trained
with only 58 of the 60 available word stimuli and
associated fMRI images. Each trained model was
tested by requiring that it first predict the fMRI
images for the two “held-out” words and then match
these correctly to their corresponding held-out fMRI
images. The process of predicting the fMRI image
for a held-out word is illustrated in Fig. 2A. The
match between the two predicted and the two ob-
served fMRI images was determined by which
match had a higher cosine similarity, evaluated over
the 500 image voxels with the most stable
responses across training presentations (26). The
expected accuracy in matching the left-out words to
their left-out fMRI images is 0.50 if the model per-
forms at chance levels. An accuracy of 0.62 or
higher for a single model trained for a single par-
ticipant was determined to be statistically significant
(P <0.05) relative to chance, based on the empirical
distribution of accuracies for randomly generated
null models (26). Similarly, observing an accuracy
of 0.62 or higher for each of the nine independently

“run

“push”

Postcentral gyrus Superior temporal
(z=30 mm) sulcus (posterior)
(z=12mm)

planning. The semantic feature for the verb “run” activates the posterior portion of the right superior temporal
sulcus, which is believed to be associated with the perception of biological motion.

Fig. 5. Accuracies of models based 30
on alternative intermediate semantic
feature sets. The accuracy of compu- 25 |

tational models that use 115 dif-
ferent randomly selected sets of
intermediate semantic features is
shown in the blue histogram. Each
feature set is based on 25 words
chosen at random from the 5000
most frequent words, excluding
the 500 most frequent words and
the stimulus words. The accuracy of
the feature set based on manually
chosen sensory-motor verbs is shown
in red. The accuracy of each feature
set is the average accuracy obtained
when it was used to train models for
each of the nine participants.
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trained participant-specific models would be statis-
tically significant at P < 10 ',

The cross-validated accuracies in matching two
unseen word stimuli to their unseen fMRI images
for models trained on participants P1 through P9
were 0.83, 0.76, 0.78, 0.72, 0.78, 0.85, 0.73, 0.68,
and 0.82 (mean = 0.77). Thus, all nine participant-
specific models exhibited accuracies significantly
above chance levels. The models succeeded in dis-
tinguishing pairs of previously unseen words in
over three-quarters of the 15,930 cross-validated
test pairs across these nine participants. Accuracy
across participants was strongly correlated (r =
—0.66) with estimated head motion (i.e., the less the
participant’s head motion, the greater the prediction
accuracy), suggesting that the variation in accu-
racies across participants is explained at least in part
by noise due to head motion.

Visual inspection of the predicted fMRI images
produced by the trained models shows that these
predicted images frequently capture substantial as-
pects of brain activation associated with stimulus
words outside the training set. An example is shown
in Fig. 2B, where the model was trained on 58 of the
60 stimuli for participant P1, omitting “celery” and
“airplane.” Although the predicted fMRI images for
“celery” and “airplane” are not perfect, they cap-
ture substantial components of the activation ac-
tually observed for these two stimuli. A plot of
similarities between all 60 predicted and observed
fMRI images is provided in fig. S3.

The model’s predictions are differentially accu-
rate in different brain locations, presumably more
accurate in those locations involved in encoding
the semantics of the input stimuli. Figure 3 shows
the model’s “accuracy map,” indicating the cortical
regions where the model’s predicted activations
for held-out words best correlate with the observed
activations, both for an individual participant (P5)
and averaged over all nine participants. These
highest-accuracy voxels are meaningfully distrib-
uted across the cortex, with the left hemisphere
more strongly represented, appearing in left inferior
temporal, fusiform, motor cortex, intraparictal
sulcus, inferior frontal, orbital frontal, and the oc-
cipital cortex. This left hemisphere dominance is
consistent with the generally held view that the left
hemisphere plays a larger role than the right hemi-
sphere in semantic representation. High-accuracy
voxels also appear in both hemispheres in the oc-
cipital cortex, intraparietal sulcus, and some of the
inferior temporal regions, all of which are also
likely to be involved in visual object processing.

It is interesting to consider whether these trained
computational models can extrapolate to make ac-
curate predictions for words in new semantic cat-
egories beyond those in the training set. To test
this, we retrained the models but this time we ex-
cluded from the training set all examples belonging
to the same semantic category as either of the two
held-out test words (e.g., when testing on “celery”
versus “airplane,” we removed every food and ve-
hicle stimulus from the training set, training on only
50 words). In this case, the cross-validated predic-
tion accuracies were 0.74, 0.69, 0.67, 0.69, 0.64,
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0.78, 0.68, 0.64, and 0.78 (mean = 0.70). This
ability of the model to extrapolate to words se-
mantically distant from those on which it was
trained suggests that the semantic features and
their learned neural activation signatures of the
model may span a diverse semantic space.

Given that the 60 stimuli are composed of five
items in each of 12 semantic categories, it is also
interesting to determine the degree to which the
model can make accurate predictions even when
the two held-out test words are from the same cat-
egory, where the discrimination is likely to be more
difficult (e.g., “celery” versus “corn”). These within-
category prediction accuracies for the nine individ-
uals were 0.61, 0.58, 0.58, 0.72, 0.58, 0.77, 0.58,
0.52, and 0.68 (mean = 0.62), indicating that al-
though the model’s accuracy is lower when it is
differentiating between semantically more similar
stimuli, on average its predictions nevertheless
remain above chance levels.

In order to test the ability of the model to dis-
tinguish among an even more diverse range of
words, we tested its ability to resolve among 1000
highly frequent words (the 1300 most frequent
tokens in the text corpus, omitting the 300 most
frequent). Specifically, we conducted a leave-one-
out test in which the model was trained using 59 of
the 60 available stimulus words. It was then given
the fMRI image for the held-out word and a set of
1001 candidate words (the 1000 frequent tokens,
plus the held-out word). It ranked these 1001
candidates by first predicting the fMRI image for
each candidate and then sorting the 1001 candidates
by the similarity between their predicted fMRI im-
age and the fMRI image it was provided. The ex-
pected percentile rank of the correct word in this
ranked list would be 0.50 if the model were op-
erating at chance. The observed percentile ranks
for the nine participants were 0.79, 0.71, 0.74, 0.67,
0.73, 0.77, 0.70, 0.63, and 0.76 (mean = 0.72), in-
dicating that the model is to some degree appli-
cable across a semantically diverse set of words
[see (26) for details].

A second approach to evaluating our compu-
tation model, beyond quantitative measurements of
its prediction accuracy, is to examine the leamed
basis set of fMRI signatures for the 25 verb-based
signatures. These 25 signatures represent the model’s
learned decomposition of neural representations into
their component semantic features and provide the
basis for all of its predictions. The leamed signatures
for the semantic features “eat,” “push,” and “run”
are shown in Fig. 4. Notice that each of these signa-
tures predicts activation in multiple cortical regions.

Examining the semantic feature signatures in
Fig. 4, one can see that the leamed fMRI signature
for the semantic feature “eat” predicts strong activa-
tion in opercular cortex (as indicated by the arrows
in the left panels), which others have suggested is a
component of gustatory cortex involved in the sense
of taste (30). Also, the learned fMRI signature for
“push” predicts substantial activation in the right
postcentral gyrus, which is widely assumed to be
involved in the planning of complex, coordinated
movements (3/). Furthermore, the learned signature

for “run” predicts strong activation in the posterior
portion of the right superior temporal lobe along the
sulcus, which others have suggested is involved in
perception of biological motion (32, 33). To sum-
marize, these learned signatures cause the model to
predict that the neural activity representing a noun
will exhibit activity in gustatory cortex to the degree
that this noun co-occurs with the verb “eat,”” in mo-
tor areas to the degree that it co-occurs with “push,”
and in cortical regions related to body motion to the
degree that it co-occurs with “run.” Whereas the
top row of Fig. 4 illustrates these learned signa-
tures for participant P1, the bottom row shows the
mean of the nine signatures leamed independently
for the nine participants. The similarity of the two
rows of signatures demonstrates that these leared
intermediate semantic feature signatures exhibit
substantial commonalities across participants.

The leamed signatures for several other verbs
also exhibit interesting correspondences between
the function of cortical regions in which they pre-
dict activation and that verb’s meaning, though in
some cases the correspondence holds for only a
subset of the nine participants. For example, ad-
ditional features for participant P1 include the sig-
nature for “touch,” which predicts strong activation
in somatosensory cortex (right postcentral gyrus),
and the signature for “listen,” which predicts acti-
vation in language-processing regions (left posterior
superior temporal sulcus and left pars triangularis),
though these trends are not common to all nine
participants. The leamed feature signatures for all
25 semantic features are provided at (26).

Given the success of this set of 25 intermediate
semantic features motivated by the conjecture that
the neural components corresponding to basic se-
mantic properties are related to sensory-motor
verbs, it is natural to ask how this set of interme-
diate semantic features compares with alternatives.
To explore this, we trained and tested models based
on randomly generated sets of semantic features,
each defined by 25 randomly drawn words from the
5000 most frequent words in the text corpus, ex-
cluding the 60 stimulus words as well as the 500
most frequent words (which contain many function
words and words without much specific semantic
content, such as “the’” and “have”). A total of 115
random feature sets was generated. For each feature
set, models were trained for all nine participants, and
the mean prediction accuracy over these nine
models was measured. The distribution of resulting
accuracies is shown in the blue histogram in Fig. 5.
The mean accuracy over these 115 feature sets is
0.60, the SD is 0.041, and the minimum and max-
imum accuracies are 0.46 and 0.68, respectively.
The random feature sets generating the highest and
lowest accuracy are shown at (26). The fact that the
mean accuracy is greater than 0.50 suggests that
many feature sets capture some of the semantic
content of the 60 stimulus words and some of the
regularities in the corresponding brain activation.
However, among these 115 feature sets, none came
close to the 0.77 mean accuracy of our manually
generated feature set (shown by the red bar in the
histogram in Fig. 5). This result suggests the set of

features defined by our sensory-motor verbs is
somewhat distinctive in capturing regularities in the
neural activation encoding the semantic content of
words in the brain.

Discussion. The results reported here estab-
lish a direct, predictive relationship between the
statistics of word co-occurrence in text and the
neural activation associated with thinking about
word meanings. Furthermore, the computational
models trained to make these predictions provide
insight into how the neural activity that represents
objects can be decomposed into a basis set of
neural activation patterns associated with different
semantic components of the objects.

The success of the specific model, which uses 25
sensory-motor verbs (as compared with alterative
models based on randomly sampled sets of 25
semantic features), lends credence to the conjecture
that neural representations of concrete nouns are in
part grounded in sensory-motor features. However,
the learmned signatures associated with the 25
intermediate semantic features also exhibit signifi-
cant activation in brain areas not directly associated
with sensory-motor function, including frontal re-
gions. Thus, it appears that the basis set of features
that underlie neural representations of concrete
nouns involves much more than sensory-motor
cortical regions.

Other recent work has suggested that the neural
encodings that represent concrete objects are at least
partly shared across individuals, based on evidence
that it is possible to identify which of several items a
person is viewing, through only their fMRI image
and a classifier model trained from other people (34).
The results reported here show that the learned
basis set of semantic features also shares certain
commonalities across individuals and may help
determine more directly which factors of neural
representations are similar and different across
individuals.

Our approach is analogous in some ways to re-
search that focuses on lower-level visual features of
picture stimuli to analyze fMRI activation asso-
ciated with viewing the picture (9, 35, 36) and to
research that compares perceived similarities be-
tween object shapes to their similarities based on
fMRI activation (37). Recent work (36) has shown
that it is possible to predict aspects of fMRI activa-
tion in parts of visual cortex based on visual features
of arbitrary scenes and to use this predicted activa-
tion to identify which of a set of candidate scenes an
individual is viewing. Our work differs from these
efforts, in that we focus on encodings of more ab-
stract semantic concepts signified by words and
predict brain-wide fMRI activations based on text
corpus features that capture semantic aspects of the
stimulus word, rather than visual features that capture
perceptual aspects. Our work is also related to recent
research that uses machine learning algorithms to
train classifiers of mental states based on fMRI data
(38, 39), though it differs in that our models are
capable of extrapolating to predict fMRI images for
mental states not present in the training set.

This research represents a shift in the paradigm
for studying neural representations in the brain,
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moving from work that has cataloged the patterns of
fMRI activity associated with specific categories of
words and pictures to instead building computational
models that predict the fMRI activity for arbitrary
words (including thousands of words for which
fMRI data are not yet available). This is a natural
progression as the field moves from pretheoretical
cataloging of data toward development of computa-
tional models and the beginnings of a theory of neu-
ral representations. Our computational models can
be viewed as encoding a restricted form of predictive
theory, one that answers such questions as “What is
the predicted fMRI neural activity encoding word
w?” and “What is the basis set of semantic features
and corresponding components of neural activation
that explain the neural activations encoding mean-
ings of concrete nouns?” Although we remain far
from a causal theory explaining how the brain syn-
thesizes these representations from its sensory in-
puts, answers even to these questions promise to
shed light on some of the key regularities underlying
neural representations of meaning.
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Cassiopeia A is the youngest supernova remnant known in the Milky Way and a unique laboratory
for supernova physics. We present an optical spectrum of the Cassiopeia A supernova near
maximum brightness, obtained from observations of a scattered light echo more than three
centuries after the direct light of the explosion swept past Earth. The spectrum shows that
Cassiopeia A was a type Ilb supernova and originated from the collapse of the helium core of a red
supergiant that had lost most of its hydrogen envelope before exploding. Our finding concludes a
long-standing debate on the Cassiopeia A progenitor and provides new insight into supernova
physics by linking the properties of the explosion to the wealth of knowledge about its remnant.
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long after its explosion using light echoes was recent-
ly demonstrated for an extragalactic supernova (6).

‘We have monitored infrared echoes around Cas
A at a wavelength of 24 um with use of the
multiband imaging photometer (MIPS) instrument
aboard the Spitzer Space Telescope (4). The results
confirm that they arise from the flash emitted in the
initial explosion of Cas A (5). An image taken on
20 August 2007 revealed a bright (flux density
Fouum=036+004Jy, 1 Jy=10*Wm >Hz ')
and mainly unresolved echo feature located 80 arc
min northwest of Cas A (position angle 311° east of
north). It had not been detected (F>4um <2 mly;
5-6) on two previous images of this region obtained
on 2 October 2006 and 23 January 2007 (Fig. 1).

An image obtained on 7 January 2008 shows
that the peak of the echo has dropped in surface
brightness by a factor of 18 and shifted toward the
west. Transient optical emission associated with
the infrared echo was detected in an R-band
image obtained at a wavelength of 6500 A at the
Calar Alto 2.2-m telescope on 6 October 2007
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1. Materials and Methods

1.1 fMRI Data collection and processing

Nine right-handed adults (5 female, age between 18 and 32) from the Carnegie Mellon
University community participated in the fMRI study, and gave informed consent approved by
the University of Pittsburgh and Carnegie Mellon Institutional Review Boards. Data from two
additional participants exhibiting head motion of 2.2 mm and 3.0 mm were excluded.

The stimuli were line drawings and noun labels of 60 concrete objects from 12 semantic
categories with 5 exemplars per category, as shown in Figure S1. Most of the line drawings
were taken or adapted from the Snodgrass and Vanderwart set (S1) and others were added using
a similar drawing style. The entire set of 60 stimulus items was presented six times, randomly
permuting the sequence of the 60 items on each presentation. Each stimulus item was presented
for 3s, followed by a 7s rest period, during which the participants were instructed to fixate on an
X displayed in the center of the screen. There were twelve additional presentations of a fixation
X, 31s each, distributed across the session to provide a baseline measure.

When an exemplar was presented, the participants’ task was to think about the properties of the
object. To promote their consideration of a consistent set of properties across the 6 presentations,
they were asked to generate a set of properties for each item prior to the scanning session (for
example, for the item castle, the properties might be cold, knights, and stone). Each participant
was free to choose any properties they wished, and there was no attempt to obtain consistency
across participants in the choice of properties.

Functional images were acquired on a Siemens (Erlangen, Germany) Allegra 3.0T scanner at the
Brain Imaging Research Center of Carnegie Mellon University and the University of Pittsburgh
using a gradient echo EPI pulse sequence with TR = 1000 ms, TE = 30 ms and a 60° flip angle.
Seventeen 5-mm thick oblique-axial slices were imaged with a gap of 1 mm between slices. The
acquisition matrix was 64 x 64 with 3.125-mm x 3.125-mm x 5-mm voxels.

Initial data processing was performed using Statistical Parametric Mapping software (SPM2,
Wellcome Department of Cognitive Neurology, London, UK). The data were corrected for slice
timing, motion, and linear trend, and were temporally filtered using a 190s cutoff. The data were
spatially normalized into MNI space and resampled to 3x3x6 mm® voxels. The percent signal
change (PSC) relative to the fixation condition was computed at each voxel for each stimulus
presentation. A single fMRI mean image was created for each of the 360 item presentations by
taking the mean of the images collected 4s, 5s, 6s, and 7s after stimulus onset (to account for the
delay in the hemodynamic response).



1.2 Text corpus data

The text corpus data was provided by Google Inc., and is available online at
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogld=L DC2006T13. It consists of a
set of n-grams (sequences of words and other text tokens) ranging from unigrams (single tokens)
up to five-grams (sequences of five tokens), along with counts giving the number of times each

n-gram appeared in a large corpus containing over a trillion total tokens. The corpus consisted of
publicly available English text web pages. N-grams occurring fewer than 40 times were not
provided. We used this data to calculate co-occurrence counts for words occurring within five
tokens of one another. These are the co-occurrence counts used in all experiments reported in
this paper.

1.3 Training the model

Once the semantic features fi(w) are specified, the parameters C,; that define the neural signature
contributed by the i™ semantic feature to the v voxel are estimated. This is accomplished by
training the model using a set of observed fMRI images associated with known stimulus words.
Each training stimulus W is first re-expressed in terms of its feature vector < fy(wy) ... fo(wy) >,
and multiple regression is then used to obtain maximum likelihood estimates of the c,; values;
that is, the set of Cy; values that minimize the sum of squared errors in reconstructing the training
fMRI images. If the number of semantic features is less than the number of training examples,
then this multiple regression problem is well posed and a unique solution is obtained. If the
number of semantic features is greater than the number of training examples, a solution can be
obtained by introducing a regularization term such as a penalty equal to the sum of squares of the
learned regression weights.

Once trained, the resulting computational model can be used to predict the full fMRI activation
image for any other word found in the trillion (10'?) token text corpus, as shown in Figure 2A of
the main text. Given an arbitrary new word Wpey the model first extracts the intermediate
semantic feature values < fj(Wnew) ... fn(Wnew) > from the corpus statistics database, then applies
the above formula using the previously learned values for the parameters ci. The computational
model and corresponding theory can be directly evaluated by comparing their predictions for
words outside the training set to observed fMRI images associated with those words. Different
predefined sets of intermediate semantic features can be directly compared by training competing
models and evaluating their prediction accuracies.

The detailed list of intermediate semantic features vectors for each of the 60 stimulus words can
be found at www.cs.cmu.edu/~tom/science2008.




1.4 Training and Evaluating Computational Models

Alternative computational models were trained based on different sets of intermediate semantic
features. Each model was trained and evaluated using a cross validation approach, in which the
model was repeatedly trained using only 58 of the 60 available stimulus items, then tested using
the two stimulus items that had been left out. On each iteration, the trained model was tested by
giving it the two stimulus words it had not yet seen (w; and w,), plus their observed fMRI
images (i; and 13), then requiring it to predict which of the two novel images was associated with
which of the two novel words, using a matching procedure described in the following section.
This leave-two-out train-test procedure was iterated 1770 times, leaving out each of the possible
word pairs. The expected accuracy in matching the two left-out words to their left-out fMRI
images is 0.50 if the matching is performed at chance levels.

1.5 Matching predicted to actual images

Given a trained computational model, two new words (w1 and w2) and two new images (il and
12), the trained model was first used to create predicted image p1 for word w1l and predicted
image p2 for word w2. It then decided which was a better match: (p1=il and p2=i2) or (p1=i2
and p2=il), by choosing the image pairing with the best similarity score. Because we do not
expect every voxel in the brain to be involved in representing the meaning of the stimulus, only a
subset of voxels was used for assessing the similarity between images. This subset of voxels was
selected automatically during training, using only the data for the 58 training words, and
excluding the data from the two test words. The voxel selection method is described below. Let
sel(i) be the vector of values of the selected subset of voxels for image i. The similarity score
between a predicted image, p, and observed image, i, was calculated as the cosine similarity
between the vectors sel(p) and sel(i). Cosine similarity between two vectors is defined as the
cosine of the angle between the vectors, and was computed as the dot product of these vectors
normalized to unit length. Finally, the similarity match score for a candidate pairing of predicted
to actual images, (e.g., p1=i2 and p2=il), was computed as the sum of the two cosine
similarities:

match(p1=i2 and p2=il) = cosineSimilarity(sel(p1),sel(i2))+cosineSimilarity(sel(p2),sel(il)).

Cosine similarity was the first similarity measure we considered, but we subsequently also
considered the Pearson correlation between two images and found that the two yielded similar
results. All results reported in the current paper use cosine similarity.

1.6 Voxel selection

As described above, similarity between two images was calculated using only a subset of the
image voxels. Voxels were selected automatically during training, using only the 58 training
words on each of the leave-two-out cross validation folds. To select voxels, all voxels were first
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assigned a "stability score" using the data from the 6 presentations of each of the 58 training
stimuli. Given these 6 x 58 = 348 presentations represented as 348 fMRI images, each voxel was
assigned a 6x58 matrix, where the entry at row 1, column j, is the value of this voxel during the
ith presentation of the jth word. The stability score for this voxel was then computed as the
average pairwise correlation over all pairs of rows in this matrix. In essence, this assigns highest
scores to voxels that exhibit a consistent (across different presentations) variation in activity
across the 58 training stimuli. For example, if a voxel were to exhibit the same 58 responses
during each presentation, it would have an average pairwise correlation of 1.0. Of course the
noise inherent in fMRI activations prevents this from happening in practice, and high pairwise
correlations tend to be found only when there is a strong and repeatable voxel response pattern of
signals that outweighs this noise. Note that high pairwise correlations can occur even among
voxels that activate similarly for some of the 58 stimuli, so long as they activate differently (and
consistently so) for at least some other subset of the 58 stimuli. The 500 voxels ranked highest
by this stability score were used in the cosine similarity test described above. Although individual
selected voxels might distinguish among only some subset of the stimuli, the entire set of voxels selected
in this fashion tends to distinguish fairly well in practice among all stimuli, as is evident from the reported
results.

1.7 Empirical distribution to determine statistical significance and p values

The expected chance accuracy of an uninformed model correctly matching two stimuli outside
the training set to their two fMRI images is 0.5. The observed accuracies of our trained models,
based on 1770 iterations of a leave-two-out cross validation train/test regime, are higher than 0.5.
Here we consider the question of how to determine p values based on observed accuracies, to
reject the null hypothesis that the trained model has true accuracy of 0.5. Given our leave-two-
out train/test regime, no closed-form formula is available to assign such a p value. Therefore, we
computed p values based on an empirical distribution of observed accuracies obtained from 768
independently trained single-participant models that we expect will have true accuracy very close
to 0.5. The empirical distribution of accuracies for these null models was 0.501, with standard
deviation 0.070, indicating that observed accuracies above 0.62 for a single participant model is
statistically significant at p<0.05. Below we describe our approach in more detail.

We created this empirical distribution of accuracies by training multiple models using the
observed fMRI images for the 60 stimulus words, but using different word labels and different
intermediate semantic features. This approach is similar to a form of permutation test, except
that instead of permuting the 60 stimulus labels, we chose 60 new words from the vocabulary of
tokens in our text corpus. In particular, each model was trained by first choosing one of our nine
participant data sets uniformly at random, then selecting 60 words uniformly at random from the
500 through 5000 most frequent words in the text corpus, then selecting 25 intermediate
semantic feature words uniformly at random from the 500 through 5000 most frequent words in
the corpus. The model was then trained and tested, substituting the 60 randomly drawn words
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for the 60 correct word labels, and using the 25 randomly drawn intermediate semantic feature
words. Models were trained and tested using the leave-two-out test regime, exactly as elsewhere
in this paper, with one minor exception: in these models the 500 most stable voxels were selected
using data from all 60 words, whereas elsewhere this selection of stable voxels was based only
on the 58 training words. This exception was made because it dramatically improves the
tractability of training hundreds of such random models, leading to a 1000-fold speedup. Note
the net effect is that the expected observed accuracy of the random models evaluated in this way
will be slightly positively biased, and the p values calculated from the resulting distribution will
therefore be slightly conservative. In fact, we found this bias to be very small, as the empirical
mean accuracy of models trained and tested in this way was 0.501, very close to the expected
chance accuracy of 0.500.

We trained and tested 768 such randomly generated models. The mean accuracy over these 768
models was 0.501, with standard deviation 0.070. The distribution of observed accuracies is
plotted in Figure S2. Examining the cumulative distribution, we found that 95% of these models
had accuracies below 0.621, and therefore assign a p value of p<0.05 to single subject models
with observed accuracies above 0.621. As a consistency check, we also modeled the empirical
distribution of accuracies as a Gaussian with u=0.501 and 6=0.070, and, based on the cumulative
distribution for a Gaussian found that p<0.05 corresponds to accuracies greater than u+1.645¢ =
0.617, which is very close to the 0.621 obtained from the empirical cumulative distribution.
Under this same Gaussian model, an accuracy of 0.719 for a single-participant model would be
significant at p <.001. Notice the above analysis applies to the accuracy of a single model
trained for a single participant. The p value associated with observing that all nine independently
trained participant models exhibit accuracies greater than 0.62 is p< 10",

1.8 Computing the accuracy map of Figure 3 in the main paper

The accuracy map in Figure 3 of the main text shows voxel clusters with the highest correlation
between predicted and actual voxel values. We first calculated sixty predicted images for the
sixty words, training a model on the other 59 words, then using this to predict the remaining
word. For each voxel, this produced a set of 60 predicted values. The accuracy score of each
voxel was calculated as the Pearson correlation between this vector of its predicted values and
the corresponding vector of its observed values. An image map containing these voxel scores
was created, and the clusters shown in Figure 3 were then produced using standard SPM tools, to
identify clusters containing at least 10 contiguous voxels whose score was greater than a
threshold value (0.28 for Figure 3A and 3B, and 0.14 for Figure 3C).



2. Additional Results and Observations

2.1 Experiment with randomly generated intermediate semantic features

Features in this experiment, summarized in Figure 5 of the main text, were defined by 25
randomly selected words. These 25 words were chosen uniformly at random from the 5000 most
frequently occurring tokens in the text corpus, and omitting the 500 most frequent tokens (which
include many function words such as "the" and "of") as well as the 60 stimulus nouns. Models
were trained and tested exactly as described for our 25 manually selected verbs, with one
exception which introduced a slight optimistic bias in the measured accuracy of models trained
with these randomly generated features: Instead of performing voxel selection using just the 58
training words on each cross-validation fold, the voxels were instead selected just once for each
participant and feature set, using all 60 words. This change was introduced in order to reduce the
computational cost of training and testing models, enabling us to explore a larger variety of
randomly generated feature sets. As discussed in the above section on "Empirical distribution to
determine statistical significance and p values," we estimate that the positive bias in observed
accuracies due to performing voxel selection is this way is negligible.

Compared to our manually generated set of 25 semantic features, the randomly generated feature
sets differed in two ways worth noting. First, whereas our manually generated features were all
verbs, the randomly generated features contained tokens of all kinds, including many adjectives,
verbs, adverbs, nouns, proper names, slang words, and some tokens frequently found on the web
which may not be commonly thought of as English words (e.g., "html"). Second, whereas we
defined the features for our verbs using three forms of the verb (e.g., the feature for the verb
"eat" used the sum of co-occurrences with the three forms of the verb "eat," "eats," and "ate"),
we did not attempt to expand randomly selected tokens into such sets of related tokens. In
general there is no obvious way to automatically expand arbitrary word tokens in an analogous

" "news") it is unclear how to do this even manually.

fashion, and for many words (e.g., "partly,

For each randomly generated feature set, models were trained for each of the nine participants.
Among the 115 randomly generated feature sets, the greatest mean accuracy achieved across the
nine participants was 0.68, compared to 0.77 for the 25 manually selected verbs. The set of 25
randomly selected feature tokens that achieved this 0.68 accuracy is: seems, productions, lots,
various, counts, seek, lab, arizona, body, pieces, drop, disabled, lol, venture, finally, arts, eating,
infrastructure, xml, nikon, ericsson, partly, governments, ladies, and ft. The feature set with the
lowest nine-participant mean accuracy achieved an accuracy of 0.46. This feature set used the
tokens: outcome, sessions, schedule, failure, characteristics, statistics, med, beauty, mt,
alternative, richard, responsible, god, parties, candidates, towards, governments, fred, father,
seeking, kim, hunt, xxx, keeps, and summary. In scanning the feature sets with higher versus
lower accuracies, we found no obvious regularities.



2.2 Learned Feature Signatures

Figure 4 in the main text shows some of the feature signatures for participant P1, and averaged
over nine participants. Voxels that were absent in any participant were excluded from the image
displaying the mean over participants. The full set of 25 feature signatures for participant P1 and
averaged over nine participants is available online at www.cs.cmu.edu/~tom/science2008

2.3 Plot of similarities between predicted and actual images

To provide more insight into the power of the trained computational model, Figure S3 depicts for
participant P1 the cosine similarity score between each of the 60 predicted images and each of
the 60 observed images, using the 500 most stable voxels as described above. Here the entry at
row 1 and column j gives the cosine similarity between the predicted image for stimulus word i,
and the observed image for word j, using a model trained without either word (training on the
other 58 words). Thus, this figure contains only similarity scores between pairs of words outside
the training set. Note high positive values along the diagonal indicate correct predictions at the
word level. High values in blocks around the diagonal reflect similarities between images from
the same semantic category. Note also the dark blue regions generally indicate category pairs
where the predicted images for words from category A are very different from (have negative
cosine similarity with) category B. Whereas Figure S3 shows the similarities for participant P1,
Figure S4 shows the similarities averaged over all nine participants.

Examining the entries in Figure S4, one can determine how well the similarity scores resolve on
average the correct word out of the 60 candidates. In particular, each row shows the similarity
scores of the predicted word's image to each of the 60 observed images (each calculated by a
model that omitted the two words being compared). Sorting these similarity scores for each row
from most to least similar, the score of the correct word appears at the 79th percentile on
average, indicating an imperfect but strong ability of the model to predict images whose features
resolve among the 60 words. The percentile rank of the correct image for each of the 60 words is
shown below. Words here are numbered according to their position in Figures S3, S4 and S5.

1. 0.283 bear 12. 0.950 barn 23.0.933 pants
2.0.767 cat 13. 0.950 church 24. 0.850 shirt
3.0.517 cow 14. 0.950 house 25.0.867 skirt
4. 0.950 dog 15. 0.400 igloo 26.0.717 bed
5. 0.950 horse 16. 0.900 arch 27.0.783 chair
6.0.750 arm 17.0.933 chimney 28. 0.833 desk
7.0.583 eye 18. 0.983 closet 29. 0.833 dresser
8. 0.933 foot 19. 0.967 door 30. 0.550 table
9. 0.883 hand 20. 0.983 window 31.0.867 ant
10. 0.833 leg 21. 0.850 coat 32.0.900 bee
11.0.917 apartment 22.0.967 dress 33.0.917 beetle
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34.0.317 butterfly 43. 0.867 refrigerator 52.0.767 celery

35.0.783 fly 44. (0.283 telephone 53.0.950 corn
36. 0.983 bottle 45. 0.867 watch 54.0.567 lettuce
37.0.817 cup 46. 0.883 chisel 55.0.150 tomato
38. 0.983 glass 47.0.833 hammer 56. 0.867 airplane
39. 0.900 knife 48. 0.933 pliers 57.0.983 bicycle
40. 0.967 spoon 49. 0.067 saw 58.0.883 car

41. 0.383 bell 50. 0.967 screwdriver 59. 0.983 train
42.0.267 key 51. 0.783 carrot 60. 0.983 truck

Note the word producing the worst prediction above is "saw" (word 49). This is primarily due to
the fact that although we presented "saw" to our subjects as a tool, the token co-occurrence
counts for "saw" used by the model are dominated by its more frequent use as a verb (past tense
of "see"). This suggests that future refinements to our model might achieve even greater
accuracy by using an enriched set of corpus features that distinguish different meanings of word
tokens.

For comparison to Figure S4, Figure S5 shows the similarities between the sixty observed
images (and is therefore a summary of the data, rather than the trained models). More
specifically, the entry at row i and column j shows the mean, over the nine participants, of the
similarity between the observed images for words 1 and j for that participant. Comparing Figure
S5 to Figure S4, it is possible to see that some of the confusions in the predicted versus actual
images (off-diagonal red and yellow entries) are the result of similarities in the actual observed
images for the two stimuli, whereas other confusions reflect errors in the model in failing to
predict differences that do exist in the actual images. For example, it appears that the similarities
visible in Figure S4 between the predicted and observed images for furniture items and building
parts may be due to actual similarities between the neural encodings of these objects as seen in
Figure 4. In comparing Figures S3, S4 and S5, note the color scale is customized to each figure,
setting the brightest red to the maximum in the matrix, and the darkest blue to the minimum.

2.4 Resolving among 1000 candidate words

As described in the main paper, we also performed a leave-one-out test in which the model was
repeatedly trained using 59 of the 60 available stimuli, and was then asked to rank a set of 1001
candidate words according to which candidate was most likely to have produced the held out
fMRI image. The ranking was based on the cosine similarity between the held out fMRI image
and the predicted images for each of the candidate words (as usual, using only the 500 most
stable voxels over the training data). For this experiment we used the 1300 most frequent tokens
in the text corpus, omitting the 300 most frequent (which contain many function words such as
"for" and "the"). As noted in the main paper, the mean percentile rank of the correct word in the
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model's ranked list was 0.72 on average, across all nine participants. The median rank accuracy
of the correct word across all participants was 0.79, reflecting the fact that most words were
ranked fairly highly, and a smaller number were ranked very poorly. Below is the list of all 60
words, sorted by their average percentile rank across all nine participants (the number next to
each word is the mean percentile rank of this word in the sorted list of candidates, when it was
the correct candidate word). As can be seen, some words, such as "glass" are very accurately
predicted on average across all participants, with only 26 of the 1000 candidates on average
ranked more likely to have generated the test fMRI image. Other words, such as "saw" and
"bear" are ranked very poorly on average. Notice that the accurately and inaccurately ranked
words below correlate highly with the words ranked accurately and inaccurately in the list above,
associated with Figure S4. The difference between these two lists is that the list below involves
ranking 1001 predicted images by their similarity to the single observed fMRI image for the
held-out word. In contrast, the list above involves ranking the 60 observed fMRI images by their
similarity to the single predicted image for the held-out word. .

1. 0.974 glass 21. 0.822 chisel 41. 0.718 carrot

2. 0.955 chimney 22.0.821 car 42.0.703 chair
3.0.914 church 23. 0.819 dresser 43.0.702 ant

4. 0.905 train 24. 0.814 skirt 44.0.673 fly

5. 0.898 bicycle 25.0.810 truck 45. 0.668 celery
6. 0.890 dress 26.0.802 leg 46. 0.628 arm

7. 0.889 closet 27.0.799 hand 47.0.585 cat

8. 0.889 screwdriver 28. 0.796 refrigerator 48. 0.585 beetle

9. 0.886 foot 29. 0.796 bee 49. 0.570 table

10. 0.884 bottle 30. 0.792 dog 50. 0.533 eye

11. 0.878 arch 31.0.791 cup 51.0.512 bell

12. 0.868 house 32.0.775 watch 52.0.512 key

13. 0.856 airplane 33.0.771 apartment 53.0.476 cow

14. 0.852 horse 34. 0.769 pants 54. 0.453 lettuce
15.0.851 door 35. 0.765 pliers 55.0.434 igloo
16. 0.849 spoon 36.0.751 desk 56. 0.345 tomato
17. 0.846 barn 37.0.743 bed 57.0.307 butterfly
18. 0.837 window 38.0.743 coat 58. 0.295 telephone
19. 0.825 hammer 39.0.738 corn 59. 0.242 bear

20. 0.824 knife 40. 0.732 shirt 60. 0.171 saw
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2.5 Note on use of co-occurrence counts to define semantic features

Although using co-occurrence counts to approximate the semantic content of a word or
document is a common technique in computational linguistics, this remains a crude approach
with several shortcomings. One is due to the fact that simple co-occurrence within a specified
window fails to resolve the syntactic relation between the two words. For example, the relation
between "mouse" and "ate" is very different in the sentence "The mouse ate the cheese" versus
"The cat ate the mouse." Our co-occurrence counts fail to resolve, for example, cases where the
noun is the subject, versus the direct object of the verb with which it co-occurs. Second, many
words have multiple meanings, and our approach fails to resolve these. For example, although
the token "saw" can refer to a noun (a tool), it more commonly refers to a verb (past tense of
"see'), resulting in a semantic feature vector that is unrepresentative of its intended meaning as a
tool, and to resulting poor prediction for this word. Despite these shortcomings, the co-
occurrence data collected from the very large corpus appears to suffice in capturing enough of
the meaning of our stimulus words to support a reasonable model. We believe stronger models
can be developed in the future by considering more sophisticated linguistic features (e.g., by
parsing the sentences to determine the relationship between verb and noun, and by automatically
resolving among different word senses).

2.6 Availability of additional online materials

Additional information is available at www.cs.cmu.edu/~tom/science2008. At the time of
publication of this paper, additional information available at this site included the detailed list of
intermediate semantic feature vectors for each of the 60 stimulus words, displays of the 25
semantic feature signatures (similar to those shown in Figure 3 of the main paper) for participant
P1, and displays of the 25 semantic feature signatures averaged over all nine participants.
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3. Additional Figures and legends

/%

hammer

,_,({Gb X airplane
Ky

o 7s

3s
Category Exemplar1 | Exemplar2 | Exemplar 3 | Exemplar4 | Exemplar5
animals bear cat cow dog horse
body parts arm eye foot hand leg
buildings apartment barn church house igloo
building parts arch chimney closet door window
clothing coat dress pants shirt skirt
furniture bed chair desk dresser table
insects ant bee beetle butterfly fly
kitchen utensils bottle cup glass knife spoon
man made objects bell key refrigerator telephone watch
tools chisel hammer pliers saw screwdriver
vegetables carrot celery corn lettuce tomato
vehicles airplane bicycle car train truck

Figure S1. Presentation and set of exemplars used in the experiment. Participants were
presented 60 distinct word-picture pairs describing common concrete nouns. These consisted of
5 exemplars from each of 12 categories, as shown above. A slow event-related paradigm was
employed, in which the stimulus was presented for 3s, followed by a 7s fixation period during
which an X was presented in the center of the screen. Images were presented as white lines and
characters on a dark background, but are inverted here to improve readability. The entire set of
60 exemplars was presented six times, randomly permuting the sequence on each presentation.
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Figure S2. Empirical distribution of accuracies for null models, and Gaussian
approximation. The blue histogram shows the observed accuracies for the 768 randomly
generated single-participant null models (mean = 0.501, standard deviation = 0.070). The red
line shows a Gaussian distribution with this mean and standard deviation. This empirical
distribution was used to determine p values for the observed model accuracies.
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Figure S3. Cosine similarities between predicted and actual images for participant P1.
The point at row 1, column j, shows the cosine similarity between the image predicted for word 1,
and the image observed for word j, when using a model trained on the other 58 words and
excluding words i and j. Numbering of exemplars of each category follows the chart shown in
Figure S1, and similarity was calculated over the 500 most accurate voxels measured over the 58
word training set. High positive values along the diagonal indicate that predicted images for a
given word are similar to the observed image for that word.
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Figure S4. Cosine similarities between predicted and actual images, averaged over all
participants. This figure follows the same conventions as Figure S3, except that it reflects the
average similarities between predicted and observed images, averaged over the nine participants.
The mean of the diagonal values is 0.179, whereas the mean over the entire matrix is -0.016,
indicating that on average the predicted image is more similar to the actual image than to others.
The maximum (most red) value in the matrix is 0.65, and the minimum (most blue) is -0.60.
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Figure S5. Cosine similarities between actual images, averaged over all participants.
This figure follows the same conventions as Figures S3 and S4, except that it reflects the average
similarities between pairs of observed images, averaged over the nine participants. High values
in blocks along the diagonal reflect similarities between images from the same semantic
category. Ignoring the diagonal entries, whose similarity values are 1.0, the maximum off-
diagonal value is 0.52, and the minimum is -0.41.
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HABICESELTVWEEEZI SN,

Sd juedioiued

°
B
a5
©

52
30
7%

3. RBIEHICFHE NI EILOHE. SME P5 DIlFEE Y NUADEEICDOWT, FREShLRIEILOE
ML ERBORY LIV OEE(CDOEEZRE (A) £JFRTLAY (B) TRULED, Th5D/RILIF. Hix<
&6 10fE DEHRULRI I ZET I R ERLTED. TRZRORI 2ILOFH-EROEEID B ED
028 TH?B, INSDORIEIL - VIR5—F, KMRELEICAHELTHED. EADRBELREE, LADER
BB, PRBE, PRAFICMABLTWEY, EAOKRE. WEE. PoIRE. £ THELD. AARED. sIFERE
AL TWS, (C)IADSMELETHILL L FU-RAEBORERR, <0/(RILIE. FHHEEN0.14 B E
DEFRUII0BAULEDORI CLILEEL I FXF—2RLTWS,

ZOESICLTIESNAHEET LD, liFEty MNCEFNTWAWHLABRKAT I OHEEICH U THERBRFAZITSC
DBTEZNESHEEZZDEEEREN, ZIT, ETINOBEEETo>fce SEIE, 20 OFRANEFEOWTIHERUBHKRAT
JVICET 202 IRTEEEY MASBRALE. FIXE TOU) & TRiTHE OTIANETS55HEE, BXYERDYORH
EINRTEEEY MDSKRAL, 50 BFE DA TEBZTolce CDHE. REZYMICL B FRNEEIX 0.74, 0.69, 0.67, 0.69, 0.64,
0.78,0.68, 0.64, 0.78 (F19=0.70) LB ofce Thid. ETUIFEBUICBEEN SEERNICHNICEEZZTTFUTES NS, ET
ILOBHRKFHEE ZOFE U MEERLY IR F v, SREBREFZH/N—UTVWSAREEZRERL TWS,

60 {8 DFREH 12 D BEAHTTYDE S5IEE TEEINTWRZEEEZ 3L, ETINEDREXTCEEATAETS> &N TE
ZhEHRT S EHEREN, BN HEULWERBDNIEUATIY—DEETH>TH, ETIIHNEOREEEAGTFAETSZ
ENTEZMCOVWTHEKREVNEDAH D, FIZIEEOU & &53H320 KE, 9 ADAFITY—AFABEEIL, 0.61,0.58,
0.58, 0.72, 0.58, 0.77, 0.58, 0.52, 0.68 (F39{E=0.62) &4 D, BERMICEL U RIHEXA T ZRICETIOBEETIZHD
D, FHWICIEF v Y ALRIVEOFRHDAIEETH D Z &b o T,

SSICEKGEEBEEHRNT Z2ETIVOEAERIT 326IC, 1000 BORBEEETFI N I—/XAOFTRLBEDF L 300 ED
K= %EZWEC 1300 BDM—2 ) OB THERT Z8ENZTA MU, EFNICIE. 60 BOREED S5, 59 EORIFEZ BV
TETIEZEIE S leave-out-one Z1Tofco TNDTANTIE, 60 BDOREENDSS 59 BOREELZRAVWTETILERZIEL
%, FERoHBEOD IMRIER & 1001 EDEFHTE (100018 OEE N —U Y EEDDBEE) 252 ft, 0 100118 OEFHZE. £IEE
o IMRIEIR ZFRIL. Ric 100118 OEFH%Z. FALK IMRIEIR & 52 5NIIMRIBEIROBLETEENRS Z & T, IBRfTHZ1T
Sfco ZOIBRIFITESNIZY ANCEIFBEVVWEEDRFINZ/N\—EV IV 7. ETILNMBRICEEL TWIBA.
050 £15%, 9 ADEBREICDOWTEAShIic/X—EY¥1IL5 V71, 0.79,0.71, 0.74, 0.67, 0.73, 0.77, 0.70, 0.63, 0.76 (Fig=
0.72) THH, ZOETIHEHENICSKLEERICHIEEBRATE3ZENREINL GERIE (26) B8B).

FRABEOEENZREICMZT, BAOHBEETIEFETZ 2 2BO7 7O—FIE, 25 DEBFEAR—X OV IR FvicHd
fMRI Y72 F ¥ DFEBR—AtY NEFARBZZETH D, ZD2BB/OITXF v, EFINES U LHEERBEZERNSEHICH
BULEHEDTHD, ETINOIRTOFAOERELDZEDTH S, 4 |3 eat, push, run EVWSEKR EORHICHT 2V IRF v
ERULIEHDTHD, NSOV TRFVIE, FTNENWEROREEESOZHEEEFALTVWSZEIEBRLTIELWL,
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A

Mean over
participants

Pars opercularis Postcentral gyrus Superior temporal
(z=24 mm) (z=30 mm) sulcus (posterior)
(z=12mm)

K 4. #ERE P1 D 25 DELKKIEE 0S5 3 DOBFMICDOWTEB LRI BILDERLES (LR £ 9 A O3
HELEATEY (TR, EFh®h, KFEARD 2 A4 RX%Z 1 REFRLTWS, T8RS, EWSEFHEIEEL:
BRI, HKEBO—ILEEZSNBIEDANRYT S Y X (Pars opercularis) DiEE % FHlT 5, £l T, &
WS BB, EHNEICEET 5L Ih2AOFOETEEELLT 5. run & WS EEEOERIISH
[FEYMEREESOMEICEET 2L SN2 A LABEEDERTZFELT 2.

N4 DEFRBEOYIRXFr—2R2E, "BRNZ) EWSEWRSHOZEEH IMRI V7% Fv—Id, KEICEDLIHREFOEBK
BERTHD EMMOMRENTRELTWD, E/NXRILORHTRT LSIC, ARVTEEDRWEEELZFALTWDZ EHbHD
(30)e FHfz push DEFEI N IMRI V7% Fv—Id, BHETHRANLGEEOHBEICESL TWS EEKBEINTVWIHDHRLERE
DFEMEEZEFALTNS (B1), TSI run DFEJFS NIV ITRFv—IE, GRIOLABEEDORIRICH 2EICH > LIBADRVWEME
Z2FHT2, INSOREFINITRFrICLD, ZRAZRIERERE, ZOEFADLE eat LHIEET BIFEREEF T, push
CHETZIFCEHF T run EHETZEFLEROESEICEET IREER TEHTDI2EETIVRFRLTWD, 4 LERIE, 1HER
BPIOFEBU Y ITRFrERLTVWED, TEIE9A OSMENMHBICEB UL I DDV I XFrDFIEZRLTVWS, O
25DV T RF v DEBIER, hSOEFINcPBNBEREBOYIRFrH, SMEMTRENLGLBEEEZRI I EZ2RL
W3,

DN DO DEFEADRFEE ., EMELE TS 2 HEEROBEE & BFRORKE OB ICERRVRGEFRZERL TV, ZORIGE
RO ON DERED—BTUNRIZL TWRWEELH D, FIZIE P1 DFE, FHBREBOEE(EFRT S touch DV T RF v
(AEPDE) . SELEEEOFEEEFRT S listen © YV RF v (Etk LAEE, E=AH) MBMEhTWS, ZhSOER
FON2BICHBIT DD TIRAEN, 25 E OBRHERAHHIRTICH T 2B EHMFUY T RXF v £ (26) IKRT,

HEANGERFECHITT 2 8RERERINBEESESAICEEL TWS EWSHERICEDWT, 20 25 @ OhENEERIFED
Y MBI IcCEE2EZ D E, ZOFENBERBFEDOEY MHIMIOBDELHRULTESBROLZBSDIFERRI & TH .
ZZT, TFAMNI—/NRICEEND 5000 EORBHEBEDS L, 60 ORIEEEL 500 DRIBHBEE (% < DEEEEEEY the  have
DESBIFEDEREFLBVEEEST) ZRVWVC 25 BEE M5 T VY AICERINELERNEEOEY NEAWVWT, EFILOEE
ETFARNETo e, ST 1SEDT VY LREEELY NMEER L. FNENOEEEY MCDOWT, 9 ADSMELEDETILE
FEU, NS 9D20ETFIOFHFAREZAELL. FUABEDOAER, K50BFBOEANIFAIKRINTVWS, D115
BEoRHEL Y N OFEEEIF 0.60, SD (& 0.041, RIVBEEERABEIFZNEN 046 £ 068 THoTco RBEVWVEEERHEWN
BEZEAE LS VI LBEHMEY M2 (26) ITRY. FHBEHN 050 ZBZTWDEWS T ElF, Z<ORHBELY b, 608
DRBEOEHRATDO—IE, ThIiCHIET 2MOFECORAMO—PERI TVWEIIEETRBLTWS, LML, Th50 115
BoR#Ery hOS5, FETERLUSHEEY NOFEBE 0.77 [GEVWEDIFEN - T, 5DEANTZLADFKRVWN—TR
INTWD, ZOERIF, BE- - EBHFATERINLFEHEEY M, SEOEKANERZ I—RNMEUL TWSIRKROHRES ORAE
ZIRZZ LT PORENTHIIEETRELTVNS,

30

25 manually
selected
verbs

0.55 0.6 0.65 0.7 0.75 0.8
Mean accuracy over nine participants

5. BIOFENAERIFHO Y NcEDCETILORE. 115 BEOHRENGERNSHOEY hE2F YT Al
BATHERUIHBEETILOREEZBTVWER NS LTRLY, Th2hOREHEE Y M 5000 B ORBHEEH
5. 50018 DRIEHEEE ERIKEEZFRWC 25 B OBEEE S VI LICBAR, FETGRARLRE - EFEFICED<
¥ty NOBEEZRTRLTWS, SRHMELY NOBEIR, ZTORMELY M 9 AOBEREZNZLOETIL
DEZICAWEEILBONETIBETH S,

SEHRESNIERIG. TFANFOEEFOHEDHIEL, HFEOBRREZZ 2 I EICREY 2HREH L DRIC. EENRT
ABMRERILIcEDTH D, 5. INSOFAETSDICIRSNIHEET IV, YEERTHEEESL. YEORED
BHRIBRERICEEY 2HBEEL/NY — Y OEBEY MLEDLSICABTEZNCDOVWTDOREEZSEZX TN,

BHIICE. 2518 OREESEFFAZRWCETILAHEIIL (2518 OBKKNEHEZ 5> ¥ LAICHE U ETILEEERL ), BRNEE
AO HERRABREESIFBRICEDVTVEEDAH D E WS HRICEREZSZTWS, U L. 258 OFREIIREHRESEIC
4/12



REU R RF vid. BREESHHRAEICEREEELSVWRER FIRERZED) TOAERRERERL, C0L3iK. B
NREFADOHBERREXZZHHOER LY MoF, BEESRERBILINCHZ < OBEEARELTWSEEEZ 515,

Fiz, BEOHRTE, EFNGYEERRIZERIYI—T 1V E, DAL EHBAHNICRBEABTEEIN TWS Z EHR
BIhTWd, Zhid, HRIANRTWIERDTZAITLADDSE, EOFATLERTWSEME, ZOADMRIEKREMMDANSE
BURSEETIVEIFITHINTED EWSHRICEDWTWS(34), SEIDERIE. 2EINLEKNSHOER LY MCHEAR
DOHBENHZZEERLTHED, HRREOEDERNMEABTUTVWT, EOBRIES DL E LD EENICHIRTT D DICEIL
DEEZBND,

BROT77O—FIE, BRBOELNILOBENSBICEE LT, 8EREE 0 IMRIBELERITS 2% (9, 35,36) ¥, MRIE
HICEDWT, YEFEOFREOME S - EMNEZ LR T 2R (37) ICEBLTWD, REDOHE (36) Tlk. FROY—V R
BRRSHICEDOWT, BEFO—HICH T SMREEEILORAEZ FAL. COFAINEEELZRAVWT. BANRRTWSEZY—V0
BEOENDZFET DI EMNARTHE DI EHNRINTWVWS, ARG, TNSOAREIFERD,. &DBRNABEKEIORFS
fbIcEREY T, MENGAEZ R RGENEH TR, RIBEGI2EEBORRNAAIEZRT T+ N I—/CXOEBICED L
T, B2ED IMREEMEL Z2F T 26D THD. BLXOMEIF. EREBZ7ILITY XLZAWVWT, IMRIT—% ICEDWTEHIRE
DHEEEL BT DREDIAE (38,39) EHEELTWVWD, RLXDETFILIFE. 2B Y MEELURWEHIRED IMRIER 289
BI2HICHET D ENTEDLEVWSEATELR>TWS,

AR, BAOHERRREMET Z/N55 (1 LADERERKL TWS, BEDOHTITY —DHEEPRICEEY % IMRISFEEID/(Y —
VEAZOTT Z2MEHLNS, FEEOHE MRIT—INELBSNTLWRWATHOEEEZSE) O IMRIES 2 FAT55EET
IWEBEITIHARANEBITLTWD, Zhid, ZOPBLT—5OERNGHY OO SHEETILORE. ZLU THRREDRE
MOBEDOAEBITLTWCHT, BRGRNTHD. BRXOHEETIVE, TSEOEKRERY MRl HEEEOFRIEA
N, TEANLGEZAOBEKREXRTHERESE NI T 2ERMMEHOERE Y M EFNICHIET 2@RFBORD ML) EWof
REICEZ D, BESNEEOFIERETSHELICEDERZIENTES, BIREAITDSINSOREBELEDLSICERL
TWEH ZFHAT 2RREROHZIBRICIEEEVD, INSOBMICHTZIEZTIZ, EROGRREOEREGIEELRR
AEDOW DO EBESHICT 3 2 EAEFEI NS,

i
Al. FEIERE

A 1.1 fMRI F—4% DINE & 018

N—XF—AOVAKZEEFERA G (ZMES5 A, FMI18WMHS 32) IF, EVYVYN—IREELVON—KF—AOVKZED
Institutional Review Board TERBEINfcA Y 7 A—LARIVEY hEBT, IMRIFARICSMU, 4, BEIHOFHEN22mm &
3.0 mmiZ o122 BOWHRED T — 7 IFBRA U T

RHIE, KS1ICRTESIC, 120BKEATIY D 60 BOEFNLBYROREEZFAINILT, AFIY &I 5 EORIRNS

foo IREIDIF & A ElE Snodgrass and Vanderwart Dty k (B S1) h S5 BEEIGEGLL, ZOMIEEKOBERY L TEML

feo 60 BEORBIEBEHE Y 2% 6 EIRRL, BRERCEWVWTE0EDTAITADIEFEZZ VY LcANEZ Tz, SREERL 3
WHEERSNE, 7PHOKRERELNSED, Z0OM, HEEHRFEEPRICERINCXICERTZLSERSIN, EELRDE
EEEBZHIC, 31 WD 12ED X DFREN ToNhi,

Category Exemplar1 | Exemplar2 | Exemplar 3 | Exemplar4 | Exemplar5
[ anima I I hear | ~at w7 don horse

body parts am eye foot hand leg
buildings apartment barn church house igloo

building parts arch chimney closet door window
clothing coat dress pants shirt skirt

furniture bed chair desk dresser table

insects ant bee beetle butterfly fly

itchen utensils bottle cup glass knife spoon

man made objects bell key refrigerator | _telephone watch

tools chisel hammer pliers saw screwdriver

vegetables carrot celery com lettuce tomato
vehicles airplane bicycle car train truck

X S1. RERICERAUVAIEDRRE LY b RREMFICIE, —MRNBEERNRELAEERT 60 DELRDHELER
WHRRSI Nz, ThiiE, BROKSIC120AFITU—HIS5ZFNZN 5 DOEHFTERINTW e, EBEER
BENS Y1 L%ZFAL, %z 3 HERERLIE 7PHOERKBEZESE, ZOMICAVY—VORRIC X £12
RUfce EifRIZ, BULWESRICAWMREXETRRINGED, ZITREANITIZEALIEZLHICRESTETWL
%, 60 EDEEH% 6 EIRRL, SOORRTIEFES VY LICANEZ I,

BEHINRRIND &, HREFZOYEOREEZEZZZENFEEL T, 6 EADRRT—EBULIEEEZEZDLSICT R
g, RFv>rEyYavoiilc, E7ATLAOMHELY NEERTZ LS ICRkOSNe BIZIE, 74740 B 0BG, FEE ™S
T Bt TRl ER3B), EENERFELBUEZERICERTENTE, BUEOBRICEVWTSNERO—BEREELS&IFL
B o T

A= F—AXOVKBEEYYN—TKREOMEERAREY Y —ICRBINLY—X VAL (K1Y, TFZ5245V) D Allegra 3.0T
AF ¥ F—T, TR=1000ms, TE=30ms, 7Yy 77> IL60° DT 5T« LY NTOA—EPI/NILRAY—T Y AERAWT, HEEEGR%E
BEL. 178D 5mm EOROMR S R%E, ATAZABOFv vy 7 1mm THRELU. BEYNY U RIE64x64 T, 3.125
mm x 3.125 mm x 5 mm®D R T EILERW,
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MEADT— 5 4IRS, Statistical Parametric Mapping ¥ 7 k7 = 77 (SPM2, Wellcome Department of Cognitive Neurology, London,
UK) ZBWTITofco T—YRRAZARDYAIVY, BE, REEAZHIEL, 190HOAY MATZBWTEENICTZ«ILY Y
VO Utke T—HIE, MNI ZRICZERMICERIEN, 3x3x6 mm3 ORI ELICVY Y TUvTEnic, RIBORRI LI, &
N7 BILTEERHICH T BESEIE (PSC) ZHE U, RIBFHSBRIS 4 W, 5#% 6 B 7 WRICKEINULEROTESE
ZRBZET, 360 EDOF7 A TLRRSEIC 1 DO IMRI FEERZER L o (MITHENRICOEEZER L)

A127FAMI—=NRAT—4H

TFRANI—/XRT—%IF, Google Inc. hSIEEEINIzHDT, #> 54 T http://Iwww.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogld=LDC2006T13 TRINTWS, 1 JBEULOB N —7 v EETKBIELRI—/XADFIC 1 gram (1 DD =T V) H5 5
gram (5 2D b —7 > DRF) £TD n-gram (BEBEPZOMDTFIAN =7 >YDRF) Oty hE, & n-gram OHBEEE%ERT H
VY RTHEREIhTWS, ZOI—/(RE —MBICAHINTWIRETFRAMNDO VT IR—ITERINTVWET, 40 ERHL
MR UGWL N-gramid Bt hEzFRBATLU e 2OT—FERBAWVT, 5 h—J YHRICHBE U BEBEORERHEZHE L, D
T—HE, ABXTHRESINTVWIIRTOEBRTERAINTWSIHEEAVY N TH S,

A 1.3 EFILOIER

B f; (w) ZIBE L, i BEOBKNSED v BEBORI ELICESY 2BV I RF v 2EHT B/NTX—Y ¢, ZHE
3, IniF, BAORBEEICEEL RSN IMRIEROEY M EFE> TETIVEIIKRT 22 & TERSIND, SRR
wy i, FY, ZORBARNI NI < f(w)...pn(w)> THRESZh, Xic, BEFEFVT, {vikvi BEORLHEEE 4D
5, & MR BREBERT 2RO _RBEDATFERIMET S ¢, EOEY B2, BERNHEOBNIIEEIOKL DB L%
WSS, COERRBERELCRESN, —BOBIESND, BRIVSHBOBI’IMAOKL DB EWEEICE, FEULER
BEHAOEMCELWRFTILT A BREQEALEEZEAT S & TEIESN D,

—EFBINLHEETIVR, AXOE2A ICRT &SI, 136102 h—2YDFFAMA—/SRICEENZHOEEDEED

fMRISEMLESRE TR T 2 HICERTZIENTES, FEOHFULWEE w,,, NEZSNEEBE, EF/NEETI—/CRHET
F—H R— 215 RRINABRLIIEEE < f1(Wnew) - - - Fr(Whew) > ERHL, RICINTX—F ¢, KDOWTHUBEIICEE LIfE%
BAWTLEOREEAT 2, SAEETILEZNECHGT BRI, gty M OBECHT2FHES, ZORECEEL THIE
nic (MR B E KT 22 & T, BEEHMET 2N TES. BRAKERINLERZTHNGERNSHOEY M, HETS
EFILEZEL, ZOFUREETMEY 22 L TEELRTZIENTE S,

60 DRIBEEDZNZNICH T 2 PENGERIEEAN Y NLOFEME Y X M &, www.cs.cmu.edu/~tom/science2008 ICIBE I T W
%o

A 1.4 HEEFIVOIIIFE & T

B thBENBERINESE Y MNCEDWT, FIOHEETILAEES NI, ZOAETIE, 60 BORIBIEE®D S5 58 EDRIH
EHERTZE>TETIVERDIBULEEL, R, Eok 2@ ORBERZHE>TTRANETS, ERELEWVWT, FBINLET
Vi, KR EDRW2 D DRIFEE (wy Ewy) &, ZTNSHBEES NI IMRIEIR (i £i0) ZH5EX5NTTANSh, RETTH
BTV Y FYIFIEZAWT, 2 DOFBEROEESN 2 DOFRMEOEES EBEL TVWEIHIEFRTE BRI N,
CORBEN—=VJFANE 1770 B #DIRL, FIREEOHZEETEZZNETNREB L. BALNILTY Y FrIbhiThhic
A, BbhEInfc2 D OBEFEMOES N IMRIER OV Y FV I OHFENSHEER 0.50 TH S,

A 1.5 FHlfE & EBEDOERDY Y F o

IS NIHEETIL, 2 DOFHMUWEE (w; & wy) , 2 DDFUWEIKR (i) & i0) BN5EZX 51D &, FTIBRSINETILZAWN
T, BEw, KNI FAER p; EHE wy CHT D FRER p, MEKSNTce ZULT. EE5HBEDTYFLTWEIOEHIBTL
feco (1 =11 andpy =1y) E(P1 =g and py = 1) DEESHEDIYFTIh%E, RLBELUEOEVEKRRFERIRTZILT
REUe BADITRTORI BILHFBOBERERRT 22 & BHEFTERVOT, EREOELIEETIET S/Hic, Ryt
O Ty hOBEFERLIL. ZORIEILOYTEY ML, FL—ZYJHIC 58 JIEEEDT—5 DHERVTHBNICRIRE
N, 220FANBEOT—YIFRAS N, RILIOBIRAEFIUTOED THS, sel() ZEEKR i DFRSNIRI2ILOHT
Y NDEORT MLET B, FRIESNCEGp CEASNER  OFOEMERTIE, X7 KL sel(p) & sel() AT 58
BEEVTEHES N, 220X MNUEOIY 1 VELER, NI MNLEOAEDIYAYELTERSN, BERIICERLLE
NEINSORI MLORY MEE L TEESI N, TRERIC, FREGREEBOERORTERF Bl:p; =iy & pp =1) OELUE
Ny FRAF%Z, 2200 VELUEDOEFE UL TEE L.

match (p; = i; and py = i) = cosine Similarity (sel(p; ), sel(i2)) + cosine Similarity (sel(p,), sel(i;)) .

RO UBMEERE Y 1 VR S 1h, Z0%, 2 DOEKEOETY VBB L. 2 D0EGEOET Y Vi
BHIRE LI, AROBRABONI, FRX TR, IT1 VEUEZAVTWS,

A 1.6 R7EILDEIR

EBRo&Sic, 2 DOEKREOELER, BERORI/ELILOY Ty hOHFZERWTHESNZ, RIEILBIRIE, FEEIC, 58 1#
DEEEERVWTEEMNICTN (leave-two-out cross validation folds), . R ZILEERT Zfcshlc, *9, 58 BEOIEREEZ

NZENE6EIRRLEEZDT—FYZHWVWT, IRTORIEILIC "REESS) 20U T, T D 6x58=348 [N ERH 348 K

D MR IERE UL TRESNTWSIEHES, &R EILICIE 6x58 DITFINEID L TSh, iTFIEOIY MY, jEBOEED ([

HOEREDOZ ORI EILDEE RS,

RIC, ZORIEILOREUEBEZ, ZOFTHNOITRTOITONOFHEEE LTHE LV, Thick D, 58 BDIERFIBICK L
T—EBU (BERZEROHET) BBHOELERIRIELCREOBALED YU TEND, FIZE HIRIEIHNRRRTRAL

58 DREERULIZEBR, FHENLBRTZ 74 XEEIF 1.0 &85, H53A, MRIDFEEHICEETD /1 XHH 31, REBICIEFZD
&5z EFRI5Y, BWRFZIAXBEANRSNDZDIE, D/ A X%EEETDLS5R, B THEREDHZRIILBE/INY
—VDIESHHZIBEICESNIEALNH S, H&H, S8HEOKHBDSE, W OIDFBTRAULSICEEILLTWRRIEZILT
b, 8 EDFHDSE, D &HMOY Ty NTERELRDFEEILZLTLWNE, BULWRT T4 IEEIRET ZAEEENH D,

COREMRATTLMUICT Y 73N 500 BORI ILIE, ROV VELUETFIMCERSh, BIRShBLZORI =
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http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
http://www.cs.cmu.edu/~tom/science2008

Vi, FEO—HoY Ty NOBTOHRBEZNZHE LAWY, COFETRIRSNAIEILOEY M2fkid, |EShic
BERNMSHSHRBESIC, EERICEINTORHDOETHED LKKFIEN3EBHH S,

A17 BEINBERNKLE p EZRET IERDH

BHREZBLLBVWETILY, LY MDD 2 DDRIBEZFD 2 DD IMRI BiREEULK VY FY I T 2HESNBBROBEIL 05 T
HD. LML, 1770 EDEDEBELET> iR, JIBETILOREIF 05 &KhbE< BT 22T, IEINALETILOED
BEHN 05 THDEWSRERSIEEANT DI, BRAINLBECEOVWTEDLSICpEEZRETINEVWSHBEZEZ S,
UL, IEETARNZE 2B DIT5AETIE, OS5 HRpEZROIBAXRRIEELLGEWV. ZIT EORBEH 0.5 ICHEIC
EWEFEEINS 768 DI U TSN E—HRETTILNSEOSNLBASNBEDRBRNLRIHICEDOVT, pEEHE
Ufco NS ORERFOBEDRERD % 0.501, EHERE 0.070 TH D, B—HRETTILOEARBEL 062 LLETHNIE p <
0.05 THREMICEETHZ 2 EZEZRLTWS, LUTTIE, BAD77O0—F&Z&DFEHMICHET 2,

ZORBHBEESTIE, 60 AORBEICOVWTERAII N IMRIBERZEAWT, ERZBEINIEERZPENGERNESZ
AWTERDETILEZZBITEZIETERUE. ZOAER, AREZTFIAMBTWSED, 60 BOREINILELEREZZDT
F<, TFHEZARNI=NADOM—=U Y DEEHNS 60 BAOFHULWEEZEAL. FETIOZEHEIF, £, 9208mET—5tY
KD 1 DE—KICTVF LIGEY, RI, TFAKMIO—/CZAD 500 h5 5000 DRIEEDEEIS—IHRICT V5 Ll 60 EDEE
B, RIT, J—/SZD 500 H5 5000 DRIEEDHEIENS—HRICT U LT 25 BOFENLERNBOEEERAL, ZULT,
Fyvyhicmtiani 60 BDOHEE 60 EOEUVWEESNIVICBEERZ, VY AICHEIN 25 BOFRENAEERNSHEE R
WT, EFILOEBETFANEToTce ETFIDFEBETAME, MOBIXELLAU L SIT leave-two-out 7 XA M AR TIThhic
Y, A DREFFADNG e TNSDETFTILTIE, RLREULL 500 BDRIZILA 60 ADEEIRNTOT—FEFE> TEIRSh
feh, OBmX T}, ZOREULLRIEILOERIE 58 BOIREZFDOHCEIVW TV, ZOFINE, CD&SBRIVILRE
T EAEESGFE I Z2BOBRVWVPIIZENICE ESE, 1000 FORAE—RT7 Yy ZILDBHBHIciTonf, 2D&3ICLT
TSN VY LAETILORFINIFABE FDITNICED/N\A ZADLDHD, HRELTESKZ DL SHESINS p E
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